Brilliant - Learn Math and Science Interactively

Parents' Guide

Education, Scholarships, Parenting Tips

How to build an engineer: Start young

Engineering as a profession is expected to grow by 8.3 percent between 2016 and 2026 and to offer an average of 126,600 open jobs each year during that time, according to the Bureau of Labor Statistics. Some engineering fields could grow even faster. The Bureau predicts we will need 10.6 percent more civil engineers and 15.2 percent more petroleum engineers. Engineering technicians, who need a solid background in math and science but not a bachelor’s degree in engineering, will also be in high demand with approximately 40,100 openings per year on average.

2.5 hours per week — Amount of science instruction the average first- through fourth-grader receives

Perhaps even more relevant to students from low-income families: Engineering jobs tend to offer steady, upper-middle class employment. The annual mean wage for all engineers as of May 2017 was $96,670, according to the Bureau of Labor Statistics.

For children growing up in a school district like Quincy’s, where apple and pear trees are far more plentiful than bachelors’ degrees, exposure to engineering as a possible future job must happen at school, said Pioneer Principal Alesha Porter. “I just want our students to know it’s possible for them to become engineers and go to college,” Porter said.

Both Porter and Jones are from Quincy and attended high school together in the early 2000s. Porter was among the first in her family to attend college. Jones, who had grown up, she said, with “about as much privilege as anyone is going to have” in Quincy, got to college intending to major in engineering and found herself totally unprepared for the coursework. Both women aspire to better prepare their students to pursue engineering degrees, should they choose that path.

The Museum of Science in Boston isn’t the only provider of engineering curricula for elementary school students. The Lawrence Hall of Science at the University of California, Berkeley, offers Amplify Science, which incorporates engineering principles of problem solving. Various other organizations like TryEngineering.org, PBS Kids and NASA offer engineering resources for K-12 classrooms.

There are also several single-city pilot programs offered by colleges. One, from Purdue University in Indiana, trains elementary school teachers to teach science using engineering design principles. American University and Johns Hopkins University work together on another to offer a program at nine high-poverty schools in Baltimore that both trains teachers and instructs students in real-life engineering projects.

During their STEAM enrichment class at Pioneer Elementary School in Quincy, Washington, Emmett Bogle, 9, pulls a bag of potatoes up a ramp, while classmates Madilynn Mendoz-Felix, 8, and Mason Duran, 9, check the force reading and Hector Quintero-Ruesga, 9, records the result.

During their STEAM enrichment class at Pioneer Elementary School in Quincy, Washington, Emmett Bogle, 9, pulls a bag of potatoes up a ramp, while classmates Madilynn Mendoz-Felix, 8, and Mason Duran, 9, check the force reading and Hector Quintero-Ruesga, 9, records the result.

“What we tried to do was pick topics that were very relevant to the student to make it appealing to kids of that age group in Baltimore,” said Carolyn Parker, the director of the masters of arts program in teaching at American University, who leads the project. “Kids at one school,” she said, “were really bothered by the number of feral cats. They wanted to help them. So how could you build cheap structures to provide shelter for cats in the winter time?”

Building those structures got the kids in Baltimore excited, Parker said, and that’s what she wants to see at the elementary school level, especially for girls and students of color. “I love science,” she said. “I love imparting that excitement and interest in the world to young people.”

The National Science Foundation, an independent federal agency, funds Parker’s work and several other organizations that work to get engineering classes into elementary schools. The Foundation also pays for studies, like the one being conducted on Engineering is Elementary, that examine how successful these new programs are at teaching kids about science and how to solve problems like an engineer. One of the goals of the National Science Foundation is to keep the United States “at the leading edge of discovery.” That includes preparing America’s schoolchildren to take on the massive task of leading in science in the 21st century, something we are arguably not making a priority.

American elementary school students currently get little exposure to math and science. Students in first through fourth grade spent an average of just 2.5 hours per week on science during the 2011-12 school year, the last for which data is available, according to the National Center for Education Statistics. Performance on measures of elementary students’ science proficiency reflect the minimum focus; just 38 percent of fourth-grade students performed at or above proficient on the 2015 National Assessment of Education Progress.

To continue reading, click on the page number below…

Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments
0
We'd love to hear your thoughts about this!x
()
x
Send this to a friend